
JOURNAL OF ENGINEERING MANAGEMENT AND COMPETITIVENESS (JEMC)

VOL. 11, NO. 2, 2021, 152-162

ISSN 2217-8147 (Online)
©2021 University of Novi Sad, Technical faculty “Mihajlo Pupin” in Zrenjanin, Republic of Serbia

Available online at http://www.tfzr.uns.ac.rs/jemc

REVIEW OF METHODS FOR MIGRATING SOFTWARE SYSTEMS TO

MICROSERVICES ARCHITECTURE

 UDC: 004.416.3
 Review Paper

Aleksandra STOJKOV
1
, Zeljko STOJANOV

2

1University of Novi Sad, Technical faculty “Mihajlo Pupin” in Zrenjanin, 23000 Zrenjanin, Đure Đakovića bb,

Republic of Serbia
2University of Novi Sad, Technical faculty “Mihajlo Pupin” in Zrenjanin, 23000 Zrenjanin, Đure Đakovića bb,

Republic of Serbia

E-mail: zeljko.stojanov@uns.ac.rs

Paper received: 03.10.2021.; Paper accepted: 21.11.2021.

Majority of software systems in business use, known as legacy systems, have monolithic structure

hard to maintain and upgrade with new features. The most common option to overcome this

situation is reengineering of existing software systems, which can be perform in different ways and

with different outcomes. One of the recent most popular approaches is migration to microservices

architectures, which makes distribution of software functionalities in small and independent units

possible. Each unit, called microservice is self-contained and independent, which makes system

manipulation and modification easier. Several methods for migration to microservice architecture

have recently been proposed. This article presents a review of methods for migrating existing

systems towards microservices. In addition, this article presents software artifacts affected by

migration methods and used algorithms. Implications and benefits of the presented study, as well as

validity issues are discussed, followed with concluding remarks and future research directions.

Keywords: Microservices; Microservices architecture; Software architecture; Reengineering; Migration

methods.

INTRODUCTION

Due to the rapid change of business conditions and

constant improvement of technologies, software

systems constantly change to remain useful for
their users (Benestad, Anda, & Arisholm, 2010),

which indicates that software maintenance is very

important for improvement of software quality (Z.
Stojanov, J. Stojanov, & Dobrilović, 2019). All

changes can harm monolithic and legacy systems

because their structure is solid and hard to modify.
Through uncontrolled modifications, software

systems deviate from the intended architecture,

which commonly results with unmanageable

monoliths (Sarkar et al., 2009). The problem with
maintenance of legacy software systems is that

subsequent modifications lead to their increased

complexity and decrease of quality, making them
hard for further maintenance (Kazanavičius &

Mažeika, 2019), resulting in decreased

organizational ability to quickly respond to

changes in the business environment (Baškarada,
Nguyen, & Koronios, 2020). To avoid the stated

problems, software systems should evolve or

migrate to better architecture patterns, and

microservices are one of them.

In last few years, many methods for migration to

microservices architecture have been proposed
(Ponce, Márquez, & Astudillo, 2019). Migration to

microservices has become popular in industry

since microservice architecture is highly scalable
(Mazzara et al., 2021), and it supports agility

(microservices are easy to deploy), reliability

(faults in one microservice do not propagate to

other microservices), and modifiability
(microservices are easy to modify) (Kazanavičius

& Mažeika, 2019). However, since microservices

are a new architecture style, there are no general
guidelines for migrating monolithic systems to

microservices (Kazanavičius & Mažeika, 2019),

strongly indicating that there is a need for

mailto:zeljko.stojanov@uns.ac.rs

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

JEMC, VOL. 11, NO. 2, 2021, 152-162 153

proposing new migration methods and reviewing

existing methods to systematize knowledge in this

contemporary technical area.

Based on the above statements, this paper aims to

present the results of reviewing scientific papers on
migration methods to microservice architectures.

The paper presents literature review method based

on guidelines proposed by (Kitchenham, 2004), as
well as findings of literature review and discussion

of implications and limitations of the presented

study.

The reminder of the paper is structured as follows.

In Background section microservices, monolith

systems, reengineering and legacy systems are
described. Section Related Work outlines other

papers performing similar literature review

analyses. In section Research Methods there is a

description of the performed research. Section
Findings displays review results. The paper ends

with Discussion and Conclusion sections.

BACKGROUND

The research presented in this article deals with a
certain type of software architecture. Fundamentals

of this architecture and the terms used in this

article are described in the following four

subsections: Microservices, Monolith Systems,
Legacy Systems and Reengineering.

Microservices

The base for microservices architecture is service-

oriented architecture, and because of that both

share the same features. They are flexible and can
easily adapt to new challenges, which makes

software application easy to maintain and extends

its life cycle (Dragičević & Bošnjak, 2019). The
difference between these two architectures is the

number and size of services, the way of sharing

resources, and reuse (Bucchiarone et al., 2020).
The number of services included in microservice

architecture depends on the complexity of a system

and boundaries between services. The size of a

microservices depends on functionality they
perform (Newman, 2020). In terms of sharing, the

main logic in service-oriented architecture is

“share-as-much-as-possible”, but in microservices
architecture it is opposite “share-as-little-as-

possible” (Bucchiarone et al., 2020). It means that

microservices are closed in view of sharing
information related to internal implementation.

They use network endpoints to connect with other

units (other parts of systems, other microservices).

Microservices are independent units

communicating through lightweight messages,

which ensures more dynamic maintenance because
when the one microservice is changed it does not

affect other microservices in the system (Newman,

2021). This microservice characteristic is named
high cohesion and loose coupling. Cohesion relates

to which level the units use the same parts (Bruce,

& Pereira, 2018), while coupling indicates the

level a change in one part of the system will affect
a change in another (Newman, 2020).

Microservices are collection of separate connected
services communicating through the network.

Because the services do not share all information

and implementation details are not essential for

good communication and working of the system,
each service can be developed using different

technologies (Wolff, 2017). Because of its

adaptability and easy maintenance, microservices
are a common choice today. They can easily adapt

to new trends and enable existing software systems

to continue their life cycle moving to
microservices architecture through reengineering.

Monolith Systems

Monolith architecture is a traditional way for

building software applications. Systems built in

monolithic architecture are written and deployed as
a single block (Chawla & Kathuria, 2019). In the

early development stage, it is easier to work with

monolith systems because they are not complex.

As the application grows and becomes more
complex, the development process slowdowns

because all parts of code are interconnected, and it

becomes more difficult for maintenance (Kalske,
2017). Changes to any part of application may

affect many system components and even disable

the entire system (Chawla & Kathuria, 2019). This
is the reason for migrating these types of systems

to microservices.

Legacy Systems

Legacy systems are old systems built in outdated

technologies but still in everyday use. Because of
monolith architecture they are difficult to maintain

and upgrade. In addition, they cannot be easily

replaced because they have supported business
processes for years and gradually upgraded their

functions. These systems contain a significant

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

154 JEMC, VOL. 11, NO. 2, 2021, 152-162

amount of data, and their replacement would take a

lot of time and money. The best way to continue

their life cycle is to migrate to new technologies.
One option is to reengineer and move to a

microservices architecture.

Reengineering

Reengineering is a process in which an old system
changes its architecture to a new architecture

pattern but keeps all functionalities. It should begin

when the old system becomes too difficult to be

maintained due to outdated and complex
architecture that cannot longer be upgraded with

new features. The process ensures that software

continues to be used with better quality, and with
lower costs of maintenance (Singh et al., 2019).

Migrating existing software system to

microservices is an option that can ensure further
system use. This is not an easy process and there

are no precisely defined rules for migration. The

main task in this process is identification of
functionalities of a system and their migration to

microservices (Velepucha & Flores, 2021). The

methods and techniques to be used for migration
process depend on goals, system artifacts and

dependencies between them. The process usually

begins with manual inspections of application

structure. There are also automatic approaches,
with software tool support, which identify

candidates for microservice migration. The

working principle of these methods is based on
grouping similar elements, and proposing

microservices (Kirby et al., 2021). The last step is

checking the results and migrating the system to

new architecture.

RELATED WORK

Microservices are an approach for architecting

distributed software systems using independent

and fine-grained services, which has gained
attention by researchers and practitioners from

industry in the last decade (Newman, 2021). This

has resulted in a large number of case studies

reporting practical experiences, as well as in
secondary studies reporting reviews of published

case studies. Identification of relevant studies and

systematization of empirical knowledge introduced
evidence-based software engineering that aims to

contribute to improvement of practical experience

of software engineers (Dyba, Kitchenham, &
Jorgensen, 2005; Zhang, Babar, & Tell, 2011).

Literature review in software engineering can be

conducted as a Systematic Literature Review

(SLR) (Kitchenham, 2004; Kitchenham et al.,

2009), a Systematic Mapping Study (SMS)
(Petersen et al., 2008; Petersen, Vakkalanka, &

Kuzniarz, 2015), or as an informal literature

review (Niazi, 2015). A literature review of studies
dealing with reviews of microservice architectures

is presented in this section.

Based on the literature review of 62 empirical

studies, Wolfart et al. (2021) proposed a roadmap

for modernization of an existing legacy system

with microservices, which contains the following
typical activities: analyze the driving forces,

understand the legacy system, decompose the

legacy system, define the microservice
architecture, execute the modernization, integrate

the microservices and the legacy, verify and

validate the microservices, and monitor the

microservices (infrastructure).

Taibi et al. (2018) conducted a systematic mapping

study with 85 papers on the use of micro services,
aimed at identification of common patterns and

principles. The authors systematized mostly used

patterns in organization of microservices, their
advantages and disadvantages. The architecture

patterns are categorized in sense of orchestration

and coordination-oriented architecture patterns,

deployment patterns, and patterns reflecting data
management. Di Francesco et al. (2019) reported a

systematic mapping study with 103 primary studies

aimed at identification, classification, and
evaluation of microservice architectures from the

perspectives of publication trends, research focus,

and potential for adoption in software industry.

Waseem et al. (2020) presented a systematic

mapping study on use of microservices

architectures in DevOps. This study included 47
primary studies published in the period from

January 2009 to July 2018, based on which the

authors identified the following key themes: (1)
microservices development and operations in

DevOps, (2) approaches and tool support for

microservices architectures in Devops, and (3)

microservice architecture migration experiences.
Migration experience relates to identification of

migration motivators, challenges, and patterns in

migration process. Bushong et al. (2021) presented
a systematic mapping study aimed at reviewing

approaches and techniques for analyze of

microservice systems, as well as evolution of
microservice based systems. The study is based on

reviewing 55 primary studies and provides review

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

JEMC, VOL. 11, NO. 2, 2021, 152-162 155

of approaches and tools for microservice analysis,

review of migration to microservices architectures,

review of software architecture reconstruction and
quality attributes, and review of microservices

evolution.

Ponce et al. (2019) conducted a study that gathers,

organizes and analyses 20 migration techniques

proposed in the literature on microservices. The
study results revealed that majority of techniques

were used for migration of object-oriented

software systems, while the most important

challenges in migration are: migration of database,
decomposition of business capabilities in smaller

pieces suitable for microservices, expert judgement

on the microservices candidates, distribution of
work to developers, and resources management.

Aksakalli et al. (2021) presented a systematic

literature review on common deployment and
communication patterns in microservice

architectures based on 38 selected primary studies.

The authors identified three types of deployment
approaches: serverless deployment, service

instance per VM, and service instance per

container. The following communication patterns
are identified: synchronous communication,

publish/subscribe communication, combination of

HTTP and message queue, communication using

message-oriented middleware, asynchronous
communication, point-to-point communication,

and communication using binary protocols.

Velepucha and Flores (2021) presented a literature
review of 37 papers on migration problems and

related challenges from monolithic architecture to

microservices. The problems relate to team

organization, selection of suitable tools,
incorporation of new technologies, completeness

of migration process, identification and design of

microservices, and information consistency when
moving from one to multiple databases.

Li et al. (2021) presented a systematic literature
review on quality attributes of microservices

architectures based on 72 selected primary studies.

Analysis of literature revealed the following most

important quality attributes: scalability,
performance, availability, monitorability, security,

and testability. For all quality attributes, the most

suitable tactics to address them are identified.

Analysis of published literature reviews on

microservice architectures revealed that this is very
interesting and promising research area, but also

that there are a lot of space to perform additional

research. This article intends to present review of

literature dealing with methods for migration of
existing software systems to microservice

architecture.

RESEARCH METHODS

The research follows guidelines for performing

systematic literature reviews in software
engineering (Kitchenham, 2004; Kitchenham et al.,

2009). The research is conducted in some steps

that are common for literature reviews, which is
presented in Figure 1.

The first step is determination of keywords related
to the selected research subject. The words that are

selected as the most suitable are classified into two

groups due to future combination in search strings.

The first group contains words: reengineering,
migration, identification. The second group

contains only word microservices. Combining the

selected keywords, the following search strings are
formed:

“reengineering” and “microservices”

“migration” and “microservices”
“identification” and “microservices”

The second step is searching for papers in digital
libraries. The best results are found on Google

Scholar ScienceDirect, IEEE Xplore and Springer

libraries.

METHODS for migration to
microservices

14 primary studies

Google Scholar
ScienceDirect
IEEE Xplore,

Springer

“reengineering” and “microservices”

“migration” and “microservices”

“identification” and “microservices”

keyword selection
and

formation of
searching strings

selection of digital
libraries

search and
classification of
science papers

result
representation

Figure1: Literature review method

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

156 JEMC, VOL. 11, NO. 2, 2021, 152-162

Table 1: Primary studies

no. Reference

ps1
Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S., Mazzara, M. (2017). From Monolithic to Microservices:

An experience report. https://doi.org/10.13140/RG.2.2.34717.00482.

ps2
Baresi, L., Garriga, M., & De Renzis, A. (2017). Microservices Identification Through Interface Analysis. In: De
Paoli F., Schulte S., Broch Johnsen E. (eds) Service-Oriented and Cloud Computing. ESOCC 2017. Lecture
Notes in Computer Science, vol 10465. Springer, Cham. https://doi.org/10.1007/978-3-319-67262-5_2

ps3
Fan, C., & Ma, S. (2017). Migrating Monolithic Mobile Application to Microservice Architecture: An
Experiment Report. 2017 IEEE International Conference on AI & Mobile Services (AIMS), 2017, 109-112.
https://doi.org/10.1109/AIMS.2017.23.

ps4
Safa, H,, Xiaodong, L., & Zhiyuan, T. (2018). An Approach to Evolving Legacy Enterprise System to
Microservice-Based Architecture through Feature-Driven Evolution Rules. International Journal of Computer
Theory and Engineering, 10(5), 164-169. https://doi.org/10.7763/IJCTE.2018.V10.1219

ps5
Eski, S., & Buzluca, F. (2018). An automatic extraction approach: transition to microservices architecture from
monolithic application. XP '18: Proceedings of the 19th International Conference on Agile Software
Development: Companion, May 2018, 25, 1–6. https://doi.org/10.1145/3234152.3234195

ps6

De Alwis A.A.C., Barros A., Fidge C., & Polyvyanyy A. (2018) Discovering Microservices in Enterprise
Systems Using a Business Object Containment Heuristic. In: Panetto H., Debruyne C., Proper H., Ardagna C.,
Roman D., Meersman R. (eds) On the Move to Meaningful Internet Systems. OTM 2018 Conferences. OTM
2018. Lecture Notes in Computer Science, vol 11230. Springer, Cham. https://doi.org/10.1007/978-3-030-02671-
4_4

ps7
Kamimura, Yano, K., Hatano, T., & A. Matsuo, A. (2018). Extracting Candidates of Microservices from
Monolithic Application Code. 2018 25th Asia-Pacific Software Engineering Conference (APSEC), 2018, 571-
580, https://doi.org/10.1109/APSEC.2018.00072.

ps8
Ren, Z., Wang, W., Wu, G., Gao, C., Chen,W., Wei, J., & Huang, T. (2018). Migrating Web Applications from
Monolithic to Microservices Architecture. In Proceedings of Internetware’18, Beijing, China, September 16,
2018, 10. https://doi.org/10.1145/3275219.3275230

ps9
 Zirkelbach, C., Krause, A., & Hasselbring, W. (2018). On the Modernization of ExplorViz towards a
Microservice Architecture. 4th Collaborative Workshop on Evolution and Maintenance of Long-Living Software
Systems (EMLS), 6th February 2018, Ulm, Germany.

ps10

Saidani, I., Ouni, A., Mkaouer, M.W., & Saied, A. (2019). Towards Automated Microservices Extraction Using
Muti-objective Evolutionary Search. In: Yangui S., Bouassida Rodriguez I., Drira K., Tari Z. (eds) Service-
Oriented Computing. ICSOC 2019. Lecture Notes in Computer Science, vol 11895. Springer, Cham.
https://doi.org/10.1007/978-3-030-33702-5_5.

ps11
Zhang, Y., Liu, B., Dai, L., Chen, K., Cao, X. (2020). Automated Microservice Identification in Legacy Systems
with Functional and Non-Functional Metrics. 2020 IEEE International Conference on Software Architecture
(ICSA), 2020,135-145. https://doi.org/10.1109/ICSA47634.2020.00021.

ps12

Daoud, M., El Mezouari, A., Faci, F., Benslimane, D., Maamar, Z., & El Fazziki, A. (2020). Towards an
Automatic Identification of Microservices from Business Processes. 2020 IEEE 29th International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2020, 42-47.
https://doi.org/10.1109/WETICE49692.2020.00017.

ps13
Gomes, M., Barbosa, H., & Maia P. H. M. (2020). Towards Identifying Microservice Candidates from Business
Rules Implemented in Stored Procedures. 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C), 2020, 41-48, https://doi.org/10.1109/ICSA-C50368.2020.00015.

ps14
Al-Debagy, O., & Martinek, Pe. (2021). A Microservice Decomposition Method Through Using Distributed
Representation of Source Code. Scalable Computing: Practice and Experience, 22(1), 39–52.
https://doi.org/10.12694/scpe.v22i1.1836.

Based on the formed search strings, the search for
papers was performed in the selected digital

libraries. Through analysis of collected papers’

titles, abstracts, and the reported findings, 14

primary studies are selected. Details about
collected studies are systematized in Excel tables,

which contain detailed bibliographical data of each

study, and specific data extracted based on the
proposed review objective (migration method, used

algorithm, affected software artifacts, domain of

software use, and software types). In Table 1

primary studies (ps) are listed used for more
detailed analysis and construction of the findings.

FINDINGS

Numerous reasons for the migration of existing

software systems to microservices are mentioned

in the analyzed literature. The main identified
reasons are improvement of software elasticity,

more controlled transformation and evolution, and

better scaling of existing software for new
requirements. Migration also helps to reduce size

of existing systems and makes it easier to upgrade

and maintain them. This is very important since

several industrial studies reported increased
complexity of maintained software systems, which

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

JEMC, VOL. 11, NO. 2, 2021, 152-162 157

leads to unmanageable evolution of existing

systems.

To improve stated disadvantages of existing

software systems, the authors of the selected

primary studies proposed methods for migration to

microservices. The methods, artifact used as input

for microservices migration methods, and used
algorithms are shown in Table 2.

Table 2: Methods for migration to microservices

ps Method Artifact Algorithm

ps1
Direct conversations, interviews and discussions with

the FX Core team, and manually inspecting the source
code.

source code, databases
and services

ps2
Matching the terms used in the OpenAPI
specifications supplied as input against a reference
vocabulary to suggest possible decompositions

OpenAPI specification
and reference
vocabulary

Decomposition Algorithm,
Semantic Assessment
Algorithm

ps3

First the system architecture is analyzed then with
domain driven design candidates are proposed. The

last step is comparation of candidates with database
and their selection.

system requirements
and the
database

Domain-Driven Design

ps4
Application of set of transformation rules for
substitution of each part of legacy application into
services

source code

ps5
Application of the graph clustering technique on
system relationships and couplings between the

classes represented as a graph.

static codes and
software

repositories

Fast Community graph
clustering algorithm

ps6
Categorization of identified business objects into
different categories and graph creating based on
relationships between business objects

business object
relationships and their
execution patterns

NSGA II

ps7

Dependent programs related to each entry point, which
is the interaction point between the system and the

user are collected and used for making list of programs
(program groups) and data from the source code.

relationship
between program
groups and data

SArF software clustering

algorithm

ps8

Combination of static and dynamic analysis in order to
get knowledge about application. From static aliases
function call graph are made and dynamic analysis
cluster application.

source code
Determination of
microservices boundary

ps9
The application is divided into two parts front-end and

back-end. Then both of parts become new
microservices.

codebase as frontend
and backend

ps10
Each class of system is added to one empty
microservice and optimal solutions are required with
algorithm

structural dependencies
in the source code (set
of classes)

NSGA-II

ps11
Finding invocations of object during execution logs
and generate object matrix that evolve in class matrix.

With algorithm microservices are proposed.

execution and
performance logs

AMI algorithm

ps12
From Business process model dependencies between
activities are extracted and clustering algorithm are
used for identified candidate to microservices

business processes
Collaborative clustering
algorithm

ps13
System requirements are found stored procedure
analyzed and microservices are proposed.

system requirement and
database - business rules
implemented in stored

procedures

ps14
Use classes from source code and cluster them based
on semantical similarity

source code
Affinity Propagation
algorithm

Methods used for migration vary from interview
and conversation-based methods, methods that

analyze different software artifacts (source code,

classes, method invocation during execution,

methods call graphs, etc.), clusters them and
propose microservice candidates, to methods

focused on analysis of business cases.

Detailed analysis of methods revealed that they use
different system artifact as main input for

decomposition and microservices identification.

The most commonly used artifacts are: source code

- classes and their interaction, software execution
traces and logs, code bases of application frontend

and backend, databases – tables, business rules and

stored procedures. Some methods use system

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

158 JEMC, VOL. 11, NO. 2, 2021, 152-162

requirements, relationship between program

groups and data or business processes. Analysis

indicate that majority of methods use different
source code elements because there are strict

language grammars for writing code, as well as

tools that can analyze code, which is essential for
automating some steps in migration process.

Algorithms identified in primary studies are listed
in Table 2. Primary studies marked as ps1, ps4, ps9

and ps13 do not mention the use of any algorithm

and because of that there are empty cells in rows

associated to these primary studies. Algorithms
used in primary studies are:

 Decomposition Algorithm. This is an algorithm

for microservice proposition using OpenAPI

specification and reference vocabulary for input
and creating links between the input operation

and the description of operation in the best way.

Operations with similar concept represent one

group and then become candidates for
microservice. [ps3]

 Semantic Assessment Algorithm. This algorithm

is a part of decomposition algorithm analyzing

each operation in software system. [ps3]

 Fast Community graph clustering algorithm.

This algorithm represents a software system as

a graph and then clusters it to detect

microservices candidates. [ps6]

 NSGA II. Nondominated Sorting Genetic

Algorithm sorts and compares all solutions to

detect microservices. The algorithm is

described by Deb et al. (2002) and used in [ps6,

ps10].

 SArF software clustering algorithm. This

algorithm collects all software resources into

clusters for microservices, without human

interaction. The algorithm is described by

Kobayashi et al. (2012) and used in [ps7].

 Determination of microservices boundary. This

algorithm generates a graph from the classes
and their functions, while interaction algorithm

clusters graph and forms application behavior

characteristic interaction matrix. [ps8]

 AMI algorithm. An Automated Microservices

Identification algorithm discovers key objects

and determines connection between them and

classes. Based on identified objects and
connections it divides a software system into a

set of microservices. [ps11]

 Collaborative Clustering algorithm. This

algorithm uses matrix for storage dependencies

between each couple of activities and clusters
them based on shared activities to propose

microservices. [ps12]

 Affinity Propagation algorithm. This algorithm

performs clustering based on measurement of
data similarity, which is described by Frey and

Dueck (2007) and used in [ps14].

Most of the methods described algorithms they use
for microservices extraction. Although they have

different name, the basic principle is the same. The

algorithms differ in the input parameters, and
whether they are automatic, semi-automatic or

manual. Based on the analysis of methods, affected

software artifacts, and used algorithms in
migration to microservices, a general migration

process is proposed and presented in Figure 2. The

output of the proposed process are microservices

candidates.

MICROSERVICES
CANDIDATE

SOFTWARE ARTIFACT

Source code

Services

Business processes

Database

Semantic

logs

 ALGORITHM

METHOD

Input Output

Process

Semmi-Authomatic

AuthomaticManual

Figure 2: General migration process

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

JEMC, VOL. 11, NO. 2, 2021, 152-162 159

Identified migration methods are tested on some

specific software applications. Domains of

applications use, software types and used
migration methods are presented in Table 3.

The most used application is web store named
JPetStore [ps8, ps10, ps11, ps14], which is a

legacy ERP system with monolithic architecture.

Analysis of domain of use revealed that migration
was performed in variety of domains, such as

banking systems, learning applications, business

and booking software, blogs, and forums.

Table 3: Domain of use and software types in

migration methods

Domain of use Software type ps
Banking system

monolithic system

ps1

Cargo Tracking System ps2

industrial application ps7

renting bikes ps12

Learning System
monolith mobile
application

ps3

web store
monolithic web

application

ps8, ps10,

ps11, ps14

software quality
measurement and
visualization tool

monolithic enterprise
systems

ps5

web crawling project ps5

business system legacy enterprise

system

ps8

ferry booking system ps6

web-based monitoring
and visualization tool

legacy system ps9

IT company legacy web system ps13

Spring Boot Pet Clinic
open-source
application

ps7

Forum
messaging boards
application

ps14

Blog blogging website ps10, ps14

Variety of software types are identified in primary

studies, but common to all of them is that they are
monolithic, and therefore, they most often migrate

to microservices to increase their performances

(availability, scalability, reliability, and
maintainability).

DISCUSSION

Results of literature review indicate that several

methods have been used for migration of existing

software systems to microservices architectures.
These methods use variety of software artifacts as

a starting point in analysis and implement different

algorithms for decomposition of existing systems
and identification of microservices candidates. In

this section, implications of the presented study,

and limitations that threat validity are discussed.

Implications

This paper presents a preliminary literature review
designed on the systematic literature review

guidelines (Kitchenham, 2004; Kitchenham et al.,

2009), but with some simplifications related to the
selection of keywords and databases for search of

studies. Due to the stated simplifications, the study

resulted in a smaller number of selected primary
studies. Nevertheless, presented findings indicate

that this type of preliminary literature reviews can

be valuable evidence for a larger audience from

academia and industry.

This study presents details on tailored guidelines

for conduct of preliminary literature review, which
can be of great benefits for PhD students and

young researchers (Pickering & Byrne, 2014). This

study can be used as a model for conducting

preliminary literature reviews in PhD research, and
later for extension of reviews to achieve systematic

review of the relevant literature.

Researchers in the field of software architectures

and reengineering of software systems can use this

study findings as a starting point for inquiry of
different methods and algorithms for migration to

microservice architectures, as well for decisions on

methods suitable for implementation in specific

domains and for specific software types.

Finding of this study reported experiences from the

selected case studies can help software architects
and maintenance experts in selection of optimal

migration methods for their domains and software

systems, which can help avoiding typical obstacles

and problems in reengineering existing software
systems.

Limitations and Validity

Although presented findings and discussed benefits

indicate that the presented study is useful for both
researchers and experts from industry, there are

some limitations that treat its validity and should

be discussed (Wright, Kim, & Perry, 2010). In

addition, literature review studies should discuss
some specific validity issues, such as construction

of search strings, selection of sources, and role of

bias in selection and classification of studies
(Ampatzoglou et al., 2019).

The first limitation relates to selection of keywords
and composition of search strings used for finding

the relevant studies. The search strings are listed in

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

160 JEMC, VOL. 11, NO. 2, 2021, 152-162

the main section of this article, but identification of

potential synonyms for the selected keywords can

provide improved search and potential
identification of a larger number of relevant

studies. For example, keyword “identification” can

be used together with synonyms “discovery” and
“finding” using logical OR operator in search

strings, which can lead to discovery of more

studies related to migration methods. The second
limitation relates to use of more digital libraries for

searching. Publisher such as Wiley or ACM list a

large number of articles, which should be included

in further literature reviews. Additional problem
relates to access to articles, since some publishers

do not allow access without subscription. These

limitations will be considered in further, more
detailed, and systematic literature reviews.

CONCLUSIONS

Microservices are contemporary architectural

patterns for structuring software systems, with

increased scalability, availability, reliability, and
maintainability compared to older patterns. These

characteristics of microservices attract many

organizations to migrate their old systems.
Although several methods have been proposed for

migration of old systems to microservice

architecture in the last ten years, there is no general

guideline. This article provides systematization of
methods for migration of existing software systems

to microservices based on a literature review. The

findings of this paper provide detailed insight into
methods used for migration of software systems to

microservice architectures, accompanied with

detailed overview of software artifacts used in the

methods, domains of use and software types
transformed during migration process. The

findings of this study are valuable for experts from

software industry during reengineering of old
systems since they can find information about

migration methods connected to affected software

artifacts, domain of use and software types.
Researcher from academia can use this review

study as a starting point for their studies or can use

and adapt the review method presented in the

study.

Future work will be pursued in two directions. The

first one is conduct of a systematic literature
review in which stated limitation of this study will

be addressed. The second one is development of a

method and a tool for migration of web
applications in complex technical systems to

microservices architecture.

ACKNOWLEDGEMENT

The Ministry of Education, Science and

Technological Development of the Republic of

Serbia supports this research under the project
“The Development of Software Tools for Business

Process Analysis and Improvement”, project

number TR32044.

REFERENCES

 ksakalli, .K., elik, T., an, .B., & Tek nerdo an,

B. (2021). Deployment and communication patterns
in microservice architectures: A systematic literature

review. Journal of Systems and Software, 180,

111014. https://doi.org/10.1016/j.jss.2021.111014.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M.,

& Chatzigeorgiou, A. (2019). Identifying,

categorizing and mitigating threats to validity in

software engineering secondary studies. Information

and Software Technology, 106, 201-230.

https://doi.org/10.1016/j.infsof.2018.10.006.

Baškarada, S., Nguyen, V., & Koronios, . (2020).

Architecting Microservices: Practical Opportunities
and Challenges. Journal of Computer Information

Systems, 60(5), 428-436).

https://doi.org/10.1080/08874417.2018.1520056.

Benestad, H.C., Anda, B., & Arisholm, E. (2010).

Understanding cost drivers of software evolution: a

quantitative and qualitative investigation of change

effort in two evolving software systems. Empirical

Software Engineering, 15(2), 166 – 203.

https://doi.org/10.1007/s10664-009-9118-8.

Bruce, M., & Pereira, A. P. (2018) Microservices in

Action. Manning. ISBN: 1617294454,

9781617294457
Bucchiarone, A., Dragoni N., Dustdar, S., Lago, P.,

Mazzara, M., Rivera, V., & Sadovykh, A. (2020)

Microservices Science and Engineering. Springer.

ISBN: 978-3-030-31648-8

Bushong, V., Abdelfattah, A.S., Maruf, A.A., Das, D.,

Lehman, A., Jaroszewski, E., Coffey, M., Cerny, T.,

Frajtak, K., Tisnovsky, P., & Bures, M. (2021). On

Microservice Analysis and Architecture Evolution:

A Systematic Mapping Study. Applied Sciences,

11(17), 7856. https://doi.org/10.3390/app11177856.

Chawla, H., & Kathuria, H. (2019). Evolution of
Microservices Architecture. In: Building

Microservices Applications on Microsoft Azure.

Apress, Berkeley, CA. https://doi.org/10.1007/978-

1-4842-4828-7_1

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.

(2002). A fast and elitist multiobjective genetic

algorithm: NSGA-II. Transactions on Evolutionary

Computation, 6(2), 182–197.

https://doi.org/10.1109/4235.996017

Di Francesco, P., Lago, P., & Malavolta, I. (2019).

Architecting with microservices: A systematic

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

JEMC, VOL. 11, NO. 2, 2021, 152-162 161

mapping study. Journal of Systems and Software,

150, 77–97.

https://doi.org/10.1016/j.jss.2019.01.001.

Dragićević, Z., & Bošnjak, S. (2019). Harmonizing

business and digital enterprise strategy using soa

middle-out and service-based approach. Journal of

Engineering Management and Competitiveness,

9(2), 97-112.
Dyba, T., Kitchenham, B., & Jorgensen, M. (2005).

Evidence-based software engineering for

practitioners, IEEE Software, 22 (1),158–165.

https://doi.org/10.1109/MS.2005.6.

Frey, B.J., & Dueck, D. (2007). Clustering by passing

messages between data points. Science 315, 5814,

972–976. https://doi.org/10.1126/science.1136800

Kalske, M. (2017). Transforming monolithic

architecture towards microservice architecture.

M.Sc. Thesis University of Helsinki, Department of

Computer Science

Kazanavičius, J., & Mažeika, D. (2019). Migrating
Legacy Software to Microservices Architecture. In

Proceedings of 2019 Open Conference of Electrical,

Electronic and Information Sciences (eStream) (pp.

1-5). https://doi.org/10.1109/eStream.2019.8732170.

Kirby, L., Boerstra, E., Anderson, Z., & Rubin J.,=

(2021). Weighing the Evidence: On Relationship

Types in Microservice Extraction. Proceedings of

the IEEE/ACM 29th International Conference on

Program Comprehension (ICPC), pp. 358-368.

https://doi.org/10.1109/ICPC52881.2021.00041

Kitchenham, B.A. (2004). Procedures for Undertaking
Systematic Reviews, Joint Technical Report.

Computer Science Department, Keele University

(TR/SE-0401) and National ICT Australia Ltd.

(0400011T.1). Keele, UK.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner,

M., Bailey, J., & Linkman, S. (2009). Systematic

literature reviews in software engineering - A

systematic literature review. Information and

Software Technology, 51(1), 7-15.

https://doi.org/10.1016/j.infsof.2008.09.009.

Kobayashi, K., Kamimura, M., Kato, K., Yano, K., &
Matsuo, A. (2012). Feature-gathering dependency-

based software clustering using dedication and

modularity. Proceedings of the 28th IEEE

International Conference on Software Maintenance

(ICSM), 462-471.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan,

Z., Shen, J., & Babar, M.A. (2021). Understanding

and addressing quality attributes of microservices

architecture: A Systematic literature review.

Information and Software Technology, 131, 106449.

https://doi.org/10.1016/j.infsof.2020.106449.

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta,
A., Larsen, S.T., & Dustdar, S. (2021).

Microservices: Migration of a Mission Critical

System. IEEE Transactions on Services Computing,

14(5), 1464-1477.

https://doi.org/10.1109/TSC.2018.2889087.

Newman, S. (2021). Building Microservices: Designing

Fine-Grained Systems. 2nd ed. Sebastopol, CA,

US : O’Reilly Media. SBN: 978-1-492-03402-5

Newman, S. (2020) Monolith To Microservices

Evolutionary Patterns to Transform Your Monolith,

O'Reilly, ISBN: 978-1-492-07554-7

Niazi, M. (2015). Do Systematic Literature Reviews

Outperform Informal Literature Reviews in the
Software Engineering Domain? An Initial Case

Study. Arabian Journal for Science & Engineering,

40(3), 845-855. https://doi.org/10.1007/s13369-015-

1586-0.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M.

(2008). Systematic mapping studies in software

engineering. In Proceedings of the 12th

International Conference on Evaluation and

Assessment in Software Engineering (EASE'08), 68-

77, Swinton, UK.

Petersen, K., Vakkalanka, S., Kuzniarz, L. (2015).

Guidelines for conducting systematic mapping
studies in software engineering: An update.

Information and Software Technology, 64, 1-18.

https://doi.org/10.1016/j.infsof.2015.03.007.

Pickering, C., & Byrne, J. (2014). The benefits of

publishing systematic quantitative literature reviews

for PhD candidates and other early-career

researchers. Higher Education Research &

Development, 33(3), 534-548.

https://doi.org/10.1080/07294360.2013.841651.

Ponce, F., Márquez, G., & Astudillo, H. (2019).

Migrating from monolithic architecture to
microservices: A Rapid Review. In Proceedings of

the 38th International Conference of the Chilean

Computer Science Society (SCCC), 1-7. Concepcion,

Chile.

https://doi.org/10.1109/SCCC49216.2019.8966423.

Sarkar, S., Ramachandran, S., Kumar, G.S., Iyengar,

M.K., Rangarajan, K., & Sivagnanam, S. (2009).

Modularization of a Large-Scale Business

Application: A Case Study. IEEE Software, 26(2),

28-35. https://doi.org/10.1109/MS.2009.42.

Singh, J., Singh, Dhindsa K., & Singh, J. (2019).
Reengineering Framework to Enhance the

Performance of Existing Software. International

Journal of Advanced Computer Science and

Applications, 10(5).

https://doi.org/10.14569/IJACSA.2019.0100570.

Stojanov, Z., & Stojanov, J., & Dobrilović, D. (2019).

lightweight inductive method for process assessment

based on frequent feedback: a study in a micro

software company. Journal of Engineering

Management and Competitiveness, 9(2), 134-147.

Taibi, D., Lenarduzzi, & V., Pahl, C. (2018)

Architectural Patterns for Microservices: A
Systematic Mapping Study. In Proceedings of the

8th International Conference on Cloud Computing

and Services Science, 221–232. Madeira, Portugal.

https://doi.org/10.5220/0006798302210232.

Velepucha, V., & Flores, P. (2021). Monoliths to

microservices - Migration Problems and Challenges:

A. Stojkov and

Ž. Stojanov

Review of methods for migrating software systems

to microservices architecture

162 JEMC, VOL. 11, NO. 2, 2021, 152-162

A SMS. In Proceedings of 2021 Second

International Conference on Information Systems

and Software Technologies (ICI2ST) (pp. 135-142).

Quito, Ecuador. 2021.

https://doi.org/10.1109/ICI2ST51859.2021.00027.

Waseem, M., Liang, P., & Shahin, M. (2020). A

Systematic Mapping Study on Microservices

Architecture in DevOps. Journal of Systems and
Software, 170, 110798.

https://doi.org/10.1016/j.jss.2020.110798.

Wolfart, D., Assunção, W.K.G., da Silva, I.F.,

Domingos, D.C.P., Schmeing, E., Donin Villaca,

G.L., & do N. Paza, D. (2021). Modernizing Legacy

Systems with Microservices: A Roadmap. In

Proceedings of Evaluation and Assessment in

Software Engineering (EASE 2021),149-159,

Trondheim, Norway.

https://doi.org/10.1145/3463274.3463334.

Wolff, E. (2017). Microservices Flexible Software

Architecture. Pearson Education, Inc. ISBN-13: 978-

0-134-60241-7 ISBN-10: 0-134-60241-2.

Wright, H.K., Kim, M., & Perry, D.E. (2010). Validity

Concerns in Software Engineering Research. In

proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research - FoSER '10, 411-

414. Santa Fe, New Mexico, USA. 2010.

https://doi.org/10.1145/1882362.1882446.

Zhang, H., Babar, M.A., & Tell, P. (2011). Identifying

relevant studies in software engineering. Information

and Software Technology, 53(6), 625-637.

https://doi.org/10.1016/j.infsof.2010.12.010.

PREGLED METODA ZA MIGRACIJU SOFTVERSKIH SISTEMA NA

MIKROSERVISNU ARHITEKTURU

Većina softverskih sistema u poslovnoj upotrebi, nazvani nasleđeni sistemi, imaju monolitnu

strukturu koja je nepogodna za održavanje i nadogradnju novim funkcionalnostima. Da bi se

prevazišla ova situacija najčešće se koristi reinženjering postojećih softverskih sistema, koji se može

sprovesti na više različitih načina i sa različitim ishodima. Jedan od najpopularnijih pristupa u

poslednje vreme je migracija na mikroservisnu arhitekturu, koja omogućuje distribuciju

softverskih funkcionalnosti u male i nezavisne jedinice. Svaka jedinica, nazvana mikroservis, je

samostalna i nezavisna, što omogućuje lakše rukovanje i održavanje sistema. Značajan broj metoda

za migraciju na mikroservisnu arhitekturu predložen je u literaturi. Ovaj članak predstavlja

pregled metoda za migraciju postojećih sistema na mikroservisnu arhitekturu. Takođe, članak

prikazuje softverske artefakte obuhvaćene ovim metodama, kao i korišćene algoritme. Diskutuje se

o implikacijama i koristima od prezentovane studije, kao i pitanjima validnosti. Na kraju članka su

prikazana zaključna razmatranja i pravci budućih istraživanja.

Ključne reči: Mikroservisi; Mikroservisna arhitektura; Softverske arhitekture; Reinženjering; Metode za

migraciju.

